Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
نویسندگان
چکیده
منابع مشابه
A Parametric Model of Piano Tuning
A parametric model of aural tuning of acoustic pianos is presented in this paper. From a few parameters, a whole tessitura model is obtained, that can be applied to any kind of pianos. Because the tuning of piano is strongly linked to the inharmonicity of its strings, a 2-parameter model for the inharmonicity coefficient along the keyboard is introduced. Constrained by piano string design consi...
متن کاملGLEU Without Tuning
The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, t...
متن کاملSelf-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information.
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, th...
متن کاملTuning Over-Relaxed ADMM
The framework of Integral Quadratic Constraints (IQC) reduces the computation of upper bounds on the convergence rate of several optimization algorithms to a semi-definite program (SDP). In the case of over-relaxed Alternating Direction Method of Multipliers (ADMM), an explicit and closed form solution to this SDP was derived in our recent work [1]. The purpose of this paper is twofold. First, ...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geoscientific Model Development
سال: 2017
ISSN: 1991-9603
DOI: 10.5194/gmd-10-1789-2017